Vulnerable Asset Management? The Case of Mutual Funds

Christoph Fricke ¹ Daniel Fricke ^{2,3,4}

¹Deutsche Bundesbank

christoph.fricke@bundesbank.de

²University College London ³London School of Economics, Systemic Risk Centre ⁴Saïd Business School, Oxford

d.fricke@ucl.ac.uk

26thSeptember2017

The views expressed here are the authors' and do not necessarily represent the views of Deutsche Bundesbank or the Eurosystem.

Christoph Fricke & Daniel Fricke

Vulnerable Asset Management?

The asset management sector grows and becomes more concentrated Graph VI.6 Per cent 60 25 20 40 20 15 10 0 2005 2006 2011 2002 2003 2004 2007 2008 2009 2010 2012 Lhs: Rhs: Aggregate assets, 500 global asset managers Share of largest 20 asset managers _

Sources: Towers Watson; BIS estimates.

< 17 ▶

Motivation - Are funds systemic?

History:

- Role of portfolio insurers in the market crash of 1987
- LTCM's asset fire-sales in 1998 and followed bailout

Regulators view: (FSB, ESRB)

- Identifying structural sources of vulnerabilities in the asset management sector
- Vulnerabilites due to asset liquidations forced by liquidity transformation and leverage
- Identify NBNI-GSIFIs to develop an adequate regulatory framework

Industry view:

- Tight leverage regulation of mutual funds
- \rightarrow Microprudential regulation mitigates systemic risk in the fund sector

Motivation - Are funds systemic?

Academia:

Evidence on fragility:

• Goldstein et al. (2015) Eunding fragility of bond funds i

Funding fragility of bond funds might cause fire-sales

• Zeng (2016) Inherent run incentives in the fund sector

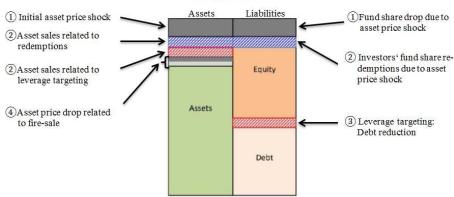
Systemic risk:

- IMF (2015)
 - Fund style and size related to fund's contribution to systemic risk (CoVaR)
 - Investment style more important than size
 - Equity funds contribute more to systemic risk than bond funds
- Danielsson & Zigrand (2015)

Focusing on negative externalities stemming from funds

Contribution:

- macroprudential stress-test on systemic risk in the mutual fund sector
- incorporation of funding fragility overcomes industry's "leverage-argument"
- fire-sales as a source of systemic risk
- estimation of systemic risk contribution at fund level addresses the negative externalities (Danielsson & Zigrand, 2015)
- reveal indicators potentially useful for regulators
 - size
 - portfolio diversification
 - portfolio (il)liquidity


Measuring vulnerabilities (Extending Greenwood, Landier, and Thesmar (2015))

Model

Fund balance sheet:

- Assets under management: A
- Asset portfolio weights: M
- Fund shares (Equity) : E
- Credit lines (Leverage): D
- Leverage-ratio: $B = \frac{D}{E}$
- 4-Step approach:
 - Initial shock on the value of funds' asset holdings.
 - Investors withdraw some of their money (flow-performance relationship).
 - Asset liquidation decision of funds for liquidity generation and leverage targeting.
 - Asset liquidations have price impact.

4-step stress-test: Illustration

Investment Fund

< 🗇 🕨

- Assume asset price returns F₁
- Obtain funds' portfolio returns: R₁ = MF₁ with R₁ being a (N × 1) vector.
- Funds' updated total assets $A_1 = A_0(1 + R_1)$
- the corresponding equity and debt position $E_1 = E_0 + A_0 R_1$ $D_1 = D_0$

Step 2: Response on the funding side

Funding providers response to asset price shocks: Shareholders - Flow-Performance-relationship:

$$\frac{\Delta E_2}{E_1} = \gamma^E R_1,\tag{1}$$

Creditors - Credit line adjustments:

$$\Delta D_2 = \gamma^D R_1 D_1 = \gamma^D R_1 D_0, \qquad (2)$$

With these additional adjustments on the liability side of the balance sheet, updated equity and debt can be written as

$$E_2 = E_1(1 + \gamma^E R_1), \qquad (3)$$

and

$$D_2 = D_1 (1 + \gamma^D R_1).$$
 (4)

Step 3: Total amount of assets to be liquidated:

$$\tilde{\phi} = \underbrace{\gamma^{E} \mathbf{M}' \mathbf{E}_{1} R_{1}}_{\text{Net inflow of equity}} + \underbrace{\gamma^{D} \mathbf{M}' \mathbf{D}_{1} R_{1}}_{\text{Net inflow of debt}} + \underbrace{\mathbf{M}' \mathbf{A}_{0} \mathbf{B} \tilde{R}_{2}}_{\text{Leverage targeting}} , \qquad (5)$$
Step 4: Asset fire-sales generate linear price impact:

$$F_3 = \mathbf{L}\tilde{\phi},\tag{6}$$

where $\boldsymbol{\mathsf{L}}$ is the matrix of price impact ratios

Definition

Aggregated Vulnerability (AV): dollar effect of shock F_1 on fund assets through fire-sales Here, standardized by funds' equity position, E_0

$$\tilde{AV} = \frac{1'_{N} \mathbf{A}_{0} \mathbf{MLM'} \left(\left[\mathbf{\Gamma}^{\mathbf{E}} \mathbf{E}_{1} + \mathbf{\Gamma}^{\mathbf{D}} \mathbf{D}_{1} \right] R_{1} + \mathbf{A}_{0} \mathbf{B} \tilde{R}_{2} \right)}{E_{0}}.$$
 (7)

with A_0MLM' as the liquidity-weighted asset holdings.

Definition

Systemicness (S): fund's individual contribution to the aggregated vulnerability

$$S_{i} = \frac{1_{N}^{\prime} \mathbf{A}_{0} \mathbf{M} \mathbf{L} \mathbf{M}^{\prime} \delta_{i} \delta_{i}^{\prime} \left(\left[\mathbf{\Gamma}^{\mathsf{E}} \mathbf{E}_{1} + \mathbf{\Gamma}^{\mathsf{D}} \mathbf{D}_{1} \right] R_{1} + \mathbf{A}_{0} \mathbf{B} \tilde{R}_{2} \right)}{E_{0}}, \qquad (8)$$

where $\sum_{i}^{N} S_{i} = A \tilde{V}$.

Definition

Indirect Vulnerability (IV):

fund's indirect vulnerability with respect to shock F_1 as the impact of the shock on its equity through the deleveraging of other funds

$$IV_{i} = \frac{\delta_{i}^{\prime} \mathbf{A}_{0} \mathbf{M} \mathbf{L} \mathbf{M}^{\prime} \left(\left[\mathbf{\Gamma}^{\mathbf{E}} \mathbf{E}_{1} + \mathbf{\Gamma}^{\mathbf{D}} \mathbf{D}_{1} \right] R_{1} + \mathbf{A}_{0} \mathbf{B} \tilde{R}_{2} \right)}{E_{i,i}}.$$
 (9)

Model Application

Data

U.S. domestic equity funds

- <u>Source</u>: CRSP Survivor-Bias-Free Mutual Fund Database
- Sample: 2003-Q1 and 2014-Q4
- Sample Size: 7,914 unique funds and 98,054 fund-quarter observations
- Balance sheet:
 - Portfolio Weights M: asset holdings at a quarterly basis
 - Size: sum of asset holdings (assets under management)
 - Flows: $Flow_{i,t} = \frac{TNA_{i,t} TNA_{i,t-1}(1 + Return_{i,t})}{TNA_{i,t-1}}$
 - Leverage: Maximum allowed leverage (Investment Company Act of 1940)

ightarrow maximum value of $rac{D}{A}$ is 0.33 ightarrow $ar{B}=0.5$

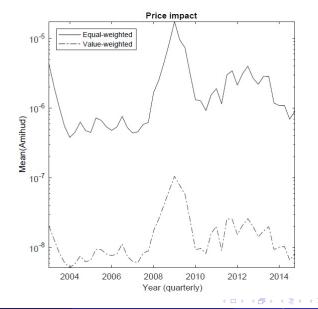
• Equity: E = A - D

Parameter: Flow-Performance Relationship

$Flow_{i,t} = \alpha + \beta \times Controls_{i,t-1} + \boxed{\gamma^E} \times Return_{i,t-1} + \epsilon_{i,t}$											
Return(t-1)	0.0508*	* 0.0553*	* 0.0629*	* 0.1402*	* 0.1490*	* 0.2748**					
	(0.0039)	(0.0037)	(0.0036)	(0.0111)	(0.0109)	(0.0268)					
:		÷	:	÷	÷	:					
Flows(t-1)	0.0884*	* 0.0616*	* 0.0156	* 0.0587*	* 0.0119	0.0760**					
	(0.0050)	(0.0065)	(0.0064)	(0.0064)	(0.0064)	(0.0098)					
:		:	÷	÷	÷	i					
log(TNA(t-1))	-0.0032*	* -0.0015*	* -0.0232*	* -0.0016*	* -0.0240*	* -0.0058					
	(0.0001)	(0.0001)	(0.0006)	(0.0001)	(0.0006)	(0.0033)					
Fund FE	No	No	Yes	No	Yes	-					
Time FE	No	No	No	Yes	Yes	-					
Fama-MacBeth	-	-	-	-	-	Yes					
adj. R ²	0.014	0.052	0.116	0.056	0.121	0.168					
Obs.	417,801	306,570	306,570	306,570	306,570	306,570					

* p<0.05; ** p<0.01

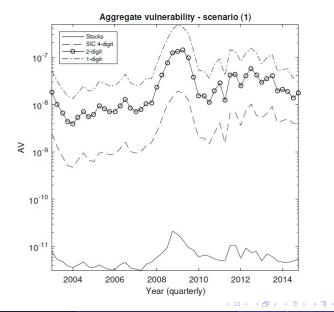
Table: Monthly data; Newey-West standard errors in parentheses.


 \rightarrow return of -1% \approx -0.30% fund share redemption

Price Impact - Asset liquidity

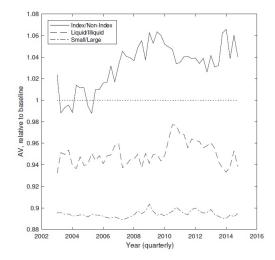
- Source: CRSP-Compustat
- Measure: Amihud ratio

$$Amihud_{k,d} = \frac{|\text{Return}_{k,d}|}{\text{DVolume}_{k,d}}$$
(10)
PriceImpact_{k,t} = $\frac{1}{D_{k,t}} \sum \text{Amihud}_{k,d}$, (11)


Price Impact

Input parameters:

- Asset price shock
 - Initial shock of -5% on all assets; $F_1 = -0.05$
- 3 price impact scenarios
 - Price impact time-varying and asset-specific.
 - 2 Price impact asset-specific but constant over time.
 - 3 Homogeneous price impact of 4.77×10^{-6} for all assets in all quarters (the typical value of the equal-weighted average price impact).

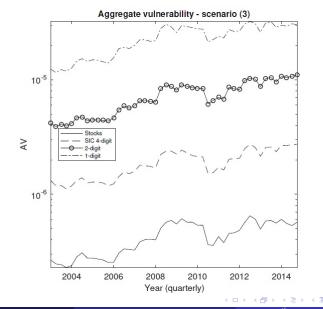

Aggregated Vulnerabilities - Scenario 1

Christoph Fricke & Daniel Fricke

26thSeptember2017 21 / 28

Aggregated Vulnerabilities - Scenario 1 - Fund split

Christoph Fricke & Daniel Fricke


Aggregated Vulnerabilities - Scenario 2

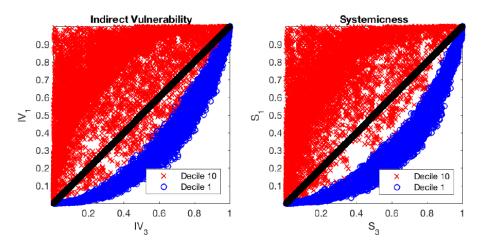
Christoph Fricke & Daniel Fricke

26thSeptember2017 23 / 28

Aggregated Vulnerabilities - Scenario 3

Christoph Fricke & Daniel Fricke

26thSeptember2017 24 / 28


Vulnerability Determinants – Alternative measures

Determinants of Fund-Specific Vulnerabilities (Scenario 1)										
	Panel A		Panel B		Panel C					
	Full Sample		Full Sample		No Crisis					
	$\log(IV_1)$	$\log(S_1)$	$\log(IV_1)$	$\log(S_1)$	$\log(IV_1)$	$\log(S_1)$				
Model-inherent measures										
$\log(TNA(t-1))$	-0.5832**	* 0.5898**								
	(0.0541)	(0.0548)								
log(MeanOverlap(t-1))	-0.3409**	* 0.1676**								
	(0.0606)	(0.0564)								
log(Illiq ^{Amihud} (t-1))	0.0772**	* 0.3245**								
	(0.0133)	(0.0143)								
Alternative measures										
log(1+Age(t-1))			-0.9402*	* 0.9657**	-0.9320*	* 0.9577**				
			(0.0197)	(0.0160)	(0.0237)	(0.0191)				
Flows ^{6M} (t-1)			-0.6697*	* 0.4111 *	-0.5889	* 0.3447				
			(0.2204)	(0.2000)	(0.2582)	(0.2338)				
log(HHI(t-1))			0.4674*	* -0.4995**	0.4818*	* -0.5074**				
			(0.0210)	(0.0132)	(0.0242)	(0.0149)				
$\log(\text{Illiq}^{\text{Spread}}(t-1))$			1.0425*	* 0.6690**	0.9868*	* 0.5858**				
			(0.0370)	(0.0444)	(0.0365)	(0.0413)				
Fama-MacBeth	Yes	Yes	Yes	Yes	Yes	Yes				
Mean R ²	0.561	0.536	0.281	0.254	0.282	0.255				
Obs.	72,872	72,872	59,430	59,430	46,440	46,440				

* p<0.05; ** p<0.01

Christoph Fricke & Daniel Fricke

Vulnerabilities according to liquidity assumptions

Christoph Fricke & Daniel Fricke

Vulnerable Asset Management?

26thSeptember2017

Implications

Policy implications

Microprudential:

Focus on resilience of a fund to a market-wide shock

 \rightarrow Indirect vulnerability (IV)

 \rightarrow larger and more diversified funds more robust

to other funds deleveraging

Macroprudential:

Concerned with negative externalities imposed by funds (Danielsson & Zigrand, 2015)

 \rightarrow Systemicness (S)

 \rightarrow larger and more diversified funds contribute more

to the vulnerabilities in the fund sector

Commonality:

Illiquidity contributes to both IV & S

- \rightarrow Better understanding of liquidity transformation in the fund sector
- \rightarrow Improve monitoring of funds' liquidity profiles

Questions & Comments